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FOREWORD

This document is a final technical summary of the progress
made by the Electrical Engineering Department of Auburn University
in the final phase of Contract NAS8-11116. This contract was granted
to Auburn Research Foundation, Auburn, Alabama, October 21, 1963, by
the George C. Marshall Space Flight Center, National Aeronautics and
Space Administration, Huntsville, Alabama, and was modified

November 21, 1964.




STMMARY
306G/

The development of an approximate steady—sfate time response
expression for an RC commutated network is given. The expression is
used in investigating several modifications of a rate gyro blender
which utilize RC commutated networks. The RC commutated networks
were added to the rate gyro blender system to attain more complete
signal cancellation irrespective of the phase relation between the
forward and aft input signals. Total cancellation is achieved by
cancellation of the inphase and quadrature components separately.
The responses of the modifications to various sinusoidal input

signals containing quadrature components are compared experimentally.
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I. INTRODUCTION

This report is the finmal technical report on Phase II of Contract
NAS8-11116. The objective of the work done under this phase of the
contract was the investigation of the use of RC commutated networks
for the purpose of eliminating the quadrature component of the first

bending mode signal in a rate gyro blender.

The primary objective of this report is to present the mathematical

studies which have been developed at Auburn University and delivered
to NASA - Marshall Spéce Flight Center, the éxperimental results in
connection with these studies, and the conclusions and recommendations
resulting from the effort. Most of the material presented herein
summarizes information contained in the previous monthly progress
Teports.

Chapter II contains a brief description of the operation of
a rate gyro blender, and in Chapter III, a mathematicél analysis of a
certain type of RC commutated network is presented. In Chapter IV,
various modifications of the rate gyro blender are investigated.
Several of the modifications utilize RC commutated networks to improve
input signal cancellation. Chapter V contains a mathematical analysis
of a cascaded configuration of two RC commutated networks. Several

recommendations are given in Chapter VI.



II. RATE GYRO BLENDER OPERATION1

A rate gyro blender system was designed by Minniapolis-Honeywell
Regulator Company and delivered to NASA - George C. Marshall Space
Fiight Center, Huntsvillie, Alabama, under Contract NAS8-5069. The
system was designed for the purpose of eliminating the first bending
mode signal from the Saturn V control system.

Throughout this report, the phrase 'bending mode' refers only
to the first bending mode. It is assumed that the higher frequency
components are attenuated by proper filtering.

The configuration of the rate gyro blender is shown in Figure 1.
The forward and aft input signals to the rate gyro blender are the
outputs of two rate gyros, one located forward and the other aft of the
first bending mode antinode of the space vehicle structure. The rate
gyro signals contain undersirable bending mode signals as well as the
desirable rigid body rate signals. The undersirable Sending mode
signals from the two rate gyros are nearly opposite in phase and have
different amplitudes, while the rigid body rate signals are in phase
and equal in amplitude.

If the bending mode signals are assumed to be 180° out of phase,
the attenuators, K and 1-K, are adaptively adjusted such that the
attenuated bending mode signals are equal in amplitude, and therefore

sum to zero. The rigid body rate signals are assumed to be equal in
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amplitude and phase, and the sum of the attenuated signals is
therefore equal to the original rate signal.
The adaptive attenuation adjustment is obtained by comparing

the magnitudes of the first bending mode signals after the K and 1-K

_ attenuators. In order to separate the first bending mode signals

from the other system frequencies, the attenuator outputs are passed
through bandpass filters with center frequencies fixed near.the center

of the first bending mode frequency range. The comparison of the
attenuated bending mode signals is accomplished by means of absolute
value circuits which follow the bandpass filters. An error signal, which.
results from the subtraction of the absolute values of attenuated first
bending mode signals, is integrated and used to adjust the magnitude of K.

Because the forward and aft bending mode signals in reality are
not always 180° out of phase, the attenuated first bending mode signals
will not sum to zero, even though their amplitudes are made equal by
suitable adjustment of K.

In order to make the blender fully effective, additional means
must. be improvised to insure complete bending mode cancellation
regardless of the phase relationship between the forward and aft input
signals. One method of accomplishing this is to operate on the inphase
and quadrature components separately. This can be realized by additional
filtering in the basic rate gyro blender. The additional filtering
consists of single RC commuta;ed networks as shown in Figure 2. The ‘
networks act as bandpass filters that pass only the component of the

input signal in phase with the commutation function.



III. RC COMMUTATED NETWORKZ

A time domain expression for the output of an RC commutated
ﬁetwork with a sinusoidal input is derived, first for the case
wherein the frequency of the input signal and that of the commutation
signal are unequal, and then for the caée wherein the frequencies are
the same. An approximate Fourier series expansion of the output for
the latter case in given, and then the sensitivity of the amplitude
of the output fundamental to changes in the characteristics of the

commutated network is discussed.

A. Introduction

Since the rate gyro blender is effective only if the forward and
aft first bending mode signals are exactly 180° out of phase, it is
necessary to eliminate any existing quadrature components of the
signal by other means.

The RC commutated network illustrated in Figure 2 is one means for
sensing the quadrature component in the first bending mode signal,

The network has the following properties:

In the cese where the input is of the form R sin (wt + ¢) a
and the capacitor’is commutated every n/w seconds, the output
fundamental component is nearly in phase with the commutation signal;
and furthermore, its amplitude is proportional to the amplitude of the

input component in phase with the commutation signal.
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In order to investigate possibilities for utilization of the
RC commutated network, it is desirable to obtain a time expression
for its response to a sinusoidal input'during any commutation period,
While a general transfer function of the network might in some cases
"be desirable, such a transfer function, by the strictest definition,
does not exist for this mnetwork.

B. Response of the RC Commutated Network
To a Sinusoidal Input

The RC commutated network, as illustrated in Figure 2, consists
of a high gain amplifier with fixed input and feedback resistors
and a commutated feedback capacitor. Each time the capacitor is
reversed, the output voltage is also reversed, and thus a new initial
charge on the capacitor must be considered following each commutation.

If an input ei(t) of the form
ei(t) = R sin (ot + ¢) (111-1)

is applied to the network, where R is the amplitude of the input,
the differential equation describing the output of the RC conmutated

network between commutations is

de,(t)
dt

+ ae (t) b sin (wt +4), (111-2)




where

and e, (t) is the output voltage of the RC network. The solution of

(III-2) is

eo(t) = Ae-at + C; sin(ot + ¢) + c, cos(ot + 9),
where

¢ = ‘232 7
and

c. o _=ab

2 2+t

Equation (III-3) can be written more conveniently as

(II1-3)
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9
e (t) = AAefat + Q@ sin wt-+_B cos wt, (III—A)Y
where
aQ = C1 cos ¢ - C2 sin ¢,
and
p = Cy sin % + C2 cos ¢,

The capacitor is commutated every'g seconds, (where T is the
period of the square wave commutation function), and there is a new
value of A, (the coefficient of the transient term in (III-4)), to be
determined after each commutation.

The output expression for the RC commutated netwofk can be
derived for several switching periods in order to determine its
general form during any future commutation period.

The first commutation is assumed to occur at t = 0. If the

voltage across the capacitor just prior to the first commutation is
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M volts, then the output voltage immediately after the first
commutation is ~M; and, -M is the initial condition to be considered
in computing the value of A from (III-4) during the time 0 < t <'; .
Evaluating eo(0)+ from (III-4), and equating it to -M, yields

A = -M-p. (III-5)
The value of A can be substituted into (III-4) to obtain the output

T
expression for (<t <7, or

eo(t) = [-(M + B)e-at + o sin wt + B cos mt].
(I11I-6)

T
u(t) - u(t - 2) ] .

The unit step function notation in (III-6) is used to denote the
commutation period over which the output expression is valid.

‘The output voltage just prior to the second commutation can be
evaluated frdm (111-6), and the value of A during the second commmu-
tation period can be obtained by equating the negative of fhis voltage
to eo(%), obtained from (III-4). If the new value of A is substituted

into (III-4), an output expression for‘% <t < T results, or
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T
{- [—(M + B) + 2(x sin a)%"+ B.cos w%)ear }e -at

]

e, (t)
(1II-7)
) 0 T
+ 2 sin wt +p cos wt I_U(t - ;) - u(t-T) .
‘ 3T
The value of A can be calculated for T< t < '2"' in the same manner

as for the previous commutation periods. Then,

T
[ . T T, B
eo(t) = 1-[-(M+B)+2(a sin co2+ B cos a);)e
- 2(a¢ sin wT + B cos wT)eaT" e-at
5 (111-8)

+ a sin ot + B cos wtfi'

.l-u(t-_T) -u(t-%?‘) J.

3T
By a similar procedure, the output for ;— <t <2Tis

I
eo(t) = {-[- M+ B)+ 2( sinw’zT'+Bcos a%)e2

aT
- 2(x sin wT + B cos wT)e 37

3T 3 a -
+ 2(x sin w‘z"' + B cos ar'I)e 2. ]e at
2 - (I1I-9)

+ o sin ot + B cos a)t}‘

-

L.u(t - zf) - u(t - 27T) ] .
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By the process of mathematical induction, it can be seen that
the output expression for any period n % <t< (nt1) % , where n

is the number of commutations minus one, can be represented by

n .
T
k k= -at
e (t) = {(-l)n[-(!ﬂ-{i)-zy (-1) (o sin mk% + B cos mk% ea 2 ] e N
k=1
+ asin wt + 8 cos wt}. (I11-10)

-nly - - I
[u(t ni) u(t (n+1)2) ] .

C. roximate Steady-State Qutput Expression For Input
And Commutation Function Equal in Frequency

The case wherein the input and commutation frequencies are equal

can be analyzed as a special case of (III-10).
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If, in (III-10), we let the input frequency w be equal to the

2
frequency of the commutation function, or w = L , then (III-10)

T

can be rewritten

a
e

n T

~7 =
—

eo(t) ={ -1° [(-M+ B) - 28

- [

0

k
+ o sin ot + B cos wt }

[u(t - ;—T)- u(t- (n+1)‘2I)]

~at

where n equals the number of commutations minus one. By the use

of the relationm,

a r a(n+1)%
ka; l-e '
poso s

al
k=0 l-e 2

(I11I-11) can be rewritten as

. a(n+1)I
1__ e |
eo(t) = {(-l)n[( -M + B8) 2B —_e_T_—Z'J

_ adt
1e2

+ a sin wt + B cos a)t}‘

T T
[u(t - n;) - u(t - (n+l)‘2') J

e-at

(I11-11)

(I11-12)

(111-13)
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<1 =-at

If t becomes large enough so that [-M + B - ———iﬁi?r- le

1l - e&? ]

can be neglected in the expansion of (III-13), then the resulting

steady~-steady approximation of eo(t) is

~a(t-n3)
[ ..nf28e ___— ,
e (t) = < (-1) L . .T J + @ sin wt + B cos um-r'
L -8
e 2 -1
(111-14)
T T !
u(t - ny) - u(t - (n+1)§) !
i
Because the difference between the actual response and the
28 -at
approximate steady-state response is [«M + B - T e »
a=
1 -e
the magnitude of a = 1 can be used as a measure of the response

time of the RC commutffzg network.
As can be seen in (III-14), the steady-state response is
independent of the voltage M on the capacitor prior to the first
commutation.
| In Figure 3, an experimentally determined steady-state response
is compared &ith the derived response from (III-14) with a given
set of input conditions. The purpose of this comparison is to verify the

approximate steady-state response’ expression.

D. Fourier Series Expansion of Steady-State Output Expression‘

Since the approximate steady-state response given by (ITI-14)

is finite, pefiodic, single valued, and has a finite number of finite



-

15

— = 1,23

C--O.5U-f

P-network Input

. : , e T ———————y yatean:
a8 3ame ik : Stz
18 Volts- | T o
_ §itsst it AN T T HHRH sis st :J
Hf T HH pee
am + 1 i
R 3 o Lu—i i 12 o H
» T 4~-» : 37 8 55 s
0 Volts - s osieaits -
 3ESEEsERsERER: SR ERYY ) i3
£ 3 5t time
s 2525 H i H
s : 3 H =
-3+ -
% Suns T ns 1
=18 Volts- . 253282 e
- 11 By +
: :
yona oy
i T H
1£11] ML_ 3 £13 ill ‘ 88! d .lﬁ }
P-network Steady-stat
15 Volts- Hoi A 222
: 3 8% H ] o
3 . }'Y T 1 11 1T N o
Heesics BStezse e TR
. + 17 J|IJI 1. 5 e ’JY +
- : £ =i i saasiansasts
] Volts-ﬂ ikl
: F S5asE time
) FHHHT T
] s : T HH
=15 Volts- : <
1 t

V¥ Computed Value from(ITI-1L)

Fig. 3 .-Steady-state Response of P-network



i6

discontinuities in any period, it may be represented by a Fourier

series expansion; or,

eo(t) = BO-+§;1 AE sin ot + ;ﬂ Bp cos fot |, (I11I-15)

§ = all c¢. no. ¢ = all c. no.

where B, Af’ and BE are the trigonometric Fourier coefficients.

The steady-state response has no dc component and has half-wave
symmetry. Therefore, it contains no even harmonics, and only the
odd harmonic coefficients need be considered. These coefficients

may be determined as follows:

T
1
Ay = -,l:f ~e°(t) sin wft dt , (1I11-16)
o
1
B = 7 e (t) cos wit dt (I11-17)
1 T o
o

By the substitution of eo(t) from (III-14) into (III-16) and (III-17),

the Fourier coefficients are evaluated as:

T

-ai. N
A = Bpu(e 2+ 1) +a (IT1-18)
T

T(e 2 - 1)(a2 + cnz)

T
-a3
Ay = . 8plw(e + 1) if § is an odd integer > 1

T(e-ai - 1)(a2 + ﬁzwz)
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T
8pate 2 + 1) '
B, = T +6 (I11-19)
-ar
T(e 2. 1)(432 + u)z) '
T
-a
8Ra(e Z + 1)

if ) is an odd integer > 1 .
-ag 2, ,22
T(e 7-1)(& + [“w’)

. R¢
1. Optimum Value of —
Rj

Suppose the input e;(t) is in phase witﬁ the commutation function,
or ¢ = 0° and, it is desired that R, ’(the amplitude of ei(t)), be
equal to -Al, and that Bys (the quadrature component of the output),
be made as small as possible.

From (III-19), it can be seen that B1 can be made as small as
R 2

desired by reducing th itude of a = —L., OF with — =
egsired by reducing the magnitude of- a F- with Ri

Z
8 ?

“1im By =“RRf 5 .

]

~ 1lim [0.234‘—1‘-] 0  (III-20)

8)
w

bid —-)()

a—» 0 a

Wl'?:

e

I
8
As can be seen in (III-18), the magnitude of A, as a—»0 is

8R¢R

-3 (111I-21)
1 bi4 Ri

a—p O

1im A
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Then if it is desired that Al = -R, the input and feedback

, 2
resistors must be adjusted such that %ﬁ = n—s- =« 1.23.

1

It should be noted that in (III-21), the magnitude A, is
insensitive to change in . However, if a = 0, the output of the
commutated network would never reach steady-state. Thus, (III-20)
and (III-21) can only be regarded as approximations whose accuracy
increases as a = ... decreases in magnitude.

RfC
Table I lists various values of A1 and Bl as an example to

illustrate the magnitude of the errors involved in using approximations

(III-20) and (III-21) for a given set of conditions.

2. Use of RC Commutated Network For Attenuating Low Frequency Inputs

Another useful property of the RC commutated network is that it
can be used to attenuate input signals which are lower in frequency
than the commutating function.
It can be seen in (III-10) that as ®, the input ffequency,
approaches zero, the steady-state dc response of the RC commutated network
approaches zero, or

1im e(t) = 0 (111-22)
a—e0

w—e0
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#ﬁ
=0

Re 1,23 =T
g L ><
e;(t) = 1 sin5.65t
eo(t) = Alsin5.65t + Bycos5.65t ei(t)

) eo(t)
(fund.) * (fund.)

1

as= i_f_C ' | A Bl
2.9 -1,01083 0.11240
2.5 -1,007uLl 0.09839
2.1 -1,00LLT 0308375
107 ‘1000195 O.%BSb
1.3 -0.99992 0.05289
0.5 -0.99 7Ll 0.02056

Table 1.-Computed Values cf Ay and By Illustrating Error
Magnitudes in Approximations (III-20) and (III-21)
for Various Values of a = 1/RsC
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Therefore, (III-22) can be used as an approximation, for low

frequency inputs. For example, consider the RC commutated network with

Rg = 5m
Ri = 5m
C = 0.1 uf

and the frequency of commutation 0.9 hz.. The steady-state response
of this configuration was investigated experimentally for a sinu-
soidal input with a peak-to-peak amplitude of 36 volts and frequency
of 0.1 hz., and it was found that the output component at 0.1 hz. had
a peak-to-peak amplitude of approximately 1.0 volt. This is an
indication of thg magnitude of error involved in the approximation

given by (III-22).

E. Conclusions

An approximate steady-state output expression is derived for the
RC commutated network with input and commutation frequencies equal.
The‘reSponse time of the network is directly proportional to'% = RLC,
the product 6f the feedback capacitance and resistance. The steady-
state output can then be expressed as a Fourier series containing only
the odd harmonic terms. The amplitude of the fundamental becomes less
sensitive to changes in w as the magnitude of "a" is decréased, and
the quadrature component of the fundamental can be made as small as
desired by decreasing the value of "a". Also, the RC commutated
network can be used for attenuating inputs with frequencies much lower

than the commutation frequency.




1V, USE OF RC COMMUTATED NETWORKS FOR ELIMINATING
QUADRATURE BENDING MODE SIGNAL

Several schemes are investigated for eliminating the quadrature
components of the first bending mode signals in the rate gyro blender,

and the effectiveness of each scheme is discussed.

A, Introduction

Several modified blender configurations utilizing RC commutated
networks were tested to determine their effectiveness in removing the
quadrature components of the first bending mode signals.

The forward and aft first bending mode signals were simulated by
a signal generator operating at 0.9 hz., which is at the center of the
frequency range of the fixed bandpass filters in the rate gyro blender.
A phase shifting circuit was used to simulate the phase differences
of 165° or 180° between the forward and aft first bending mode signals.
The amplitudes used for the simulated first bending mode signals were 36
volts and 18 volts peak-to-peak.

In each test, the blender modification under consideration was
subjected to the various phase and amplitude combinations, and the

amplitude, E , of the fundamental frequency in the output was recorded,

~ A twin-T filter with center frequency at 0.9 hz. was used at the

output to separate the fundamental frequency from the harmonics.

21
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Even harmonics are generated by the absolute wvalue circuits, and
the odd harmonics are generated by the RC commﬁtated networks.

The closed-loop time response of the system was investigated
for each modification by recording the output of the integrator
immediately after the blender (with a 36 volt peak-to-peak signal on
both channels) was piaced in the ''caged" (operate) configuration. An
effort was made to maintain, as nearly as possible, similar time re-
sponses for each modification. In each test, the integrator input
potentiometer R2 (used to adjust the gain) and the magnitude of a = iiE
of the RC commutated networks were adjusted such that the integrator
output reached 63 percent of its final value in at least one second.
Because "a" is finite, there is always a finite quadrature component on
the output of each commutated network.

The ummodified blender configuration was tested first in order to -

establish a basis of comparison for each of the modifications which follow.

B. Ummodified Rate Gyro Blender

The ummodified rate gyro blender was subjected to the previously
descfibed combinations of test inputs, and R2 of the integrator circuit
was adjusted for the desired system time response. The test results
appear in Figure 4.

In theory, the output of the blender, with inputs 180° out of
phase, should be zero for all combinations of input amplitudes. A
dc integrator bias adjustment is provided for this purpose. However,

it was necessary to readjust the bias each time the input amplitudes
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were changed in order to maintain zero output. This problem is
attributed to the nonlinear characteristics of the saturable reactors
used in variable attenuators.
For the purpose of this and following tests, the bias adjustment
was fixed. The value was obtained by minimizing the blender outputs

e combinations of forward and aft input signal ampli-

[y
o]
~
[
o
[
i)
2]
n
(]
[
o
i

C. Modification I

The circuit of modification I is illustrated in Figure 5. This
modification uses a square-wave demodulator in place of the absolute
value circuits. The outputs of the bandpass filters are summed and
multiplied by a square-wave function, and the resulting signal is
applied to an integrator external to the blender breadboard (the bread-
board integrator is not accessible).

Modification I was tested as a possible alternative to the un-

modified blender configuration.

1. Theory of Operation

The P-demodulation function used to operate the SPDT switch of
the P-demodulator is a square wave equal in frequency to that of the
bending mode signal. The phase of the P-demodulation function is
adjusted for inputs 180° out of phase such that the position of the
SPDT switch changes each time the P-demodulator input passes thru zero.
If the input is positive, the output is equal to the input; but, if the

input is negative, the output is the negative of the input. Therefore,
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for inputs 186) out of phase, the P-demodulator dec output is propor-
tional to the absolute value of the sum of the forward and aft
attenuated signals.

The integrator configuration used in modification I has the same

function as the integrator circuit of the ummodified blender.

2. Results

The test data and time response from the test of modification I
appear in Figure 5. The results are very similar to those obtained in
testing of the ummodified blender configuration.

Again, it was impossible to find one integrator bias setting which

o]
would zero the blender output for all signal combinations that were 180

out of phase,

D. Modification IX

The circuit configuration of modification iI is illustrated in
Figure 6.

The P-networks (see Figure 2) are commutated by é square-wave
commutation signal at the frequency of the first bending mode. The
Q-networks (see Figure 2) are commutated by a square wave commutation
function in quadrature with the P commutation signal. It is mnot
necessary for the P and Q commutation functions to have any particular
phase relationship to the first bending mode signal, but their frequency
must be exactly equal to the first bending mode frequency.

The P commutation function used for testing purposes was in phase

with the forward first bending mode signal.
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1. Theory of Operation

The fundamental frequency output amplitudes of the P-networks

are proportional to the amplitudes of the attenuated input components
that are in phase with the P commutation function; and, they are nearly
independent of the quadrature input amplitudes, assuming that a ='Eia
is small. This can be seen from (IIi-20). Therefore, the integrator
output increases or decreases until the amplitudes of the attemuated
components of the forward and aft signals which are in phase with the
P commutation function are equal.

R 2
The Q-networks are adjusted such that‘-% = %— . As shown in

Ry
Chapter III, Section D, the fundamental output components are equal in
amplitude and opposite in phase to the quadrature components of the
attenuated forward and aft input signals. Then, if their outputs are
summed positively with the forward and aft attenuated signals, as

shown in Figure 6, the quadrature components of the blender output

are cancelled.

2. Results

The test data and the time response for the circuit of modification II
are given in Figure 6, and values of the commutated network components
required for the given time response are given in the test configuration.

One source of error between the test results and theoretical results
is the assumption concerning the magnitude of a ='§ia . In this
configuration "a" camnot be made arbitrarily small because of the

required time responmse of the integrator output signal.
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E. Modification III

The circuit configuration of modification III is illustrated in
Figure 7.

In this modification, the bandpass filteré are replaced with P-
networks, and a Q-network is utilized in order to remove the quadrature
component of the rate gyro blender output at the first bending mode

frequency.

1. Theory of Operation

The operation of modification III is similar to that of modifica-
tion II,

As was shown in Chapter III, the P-network attenuates all input
components whose frequencies are much less than the commtation
frequency. The first bending mode frequency to be considered (which
is used as the P-network commutation function), is approximately ten
times the frequency of the rigid body rate signal. Then, if it is
assumed that there are no components in the forward and aft input
signals with frequencies higher than the first bending mode signal, the
P-network can be used to perform the same function as the bandpass
filter; that is, it can be used to attenuate the control signal and
pass the first bending mode signal. An additional property of the
P-network is that only the component of the first bending mode

signal that is in phase with the P commutation function is passed.

R 2
The Q-network is adjusted such that-ﬁg = 'g- . Then, as shown
i

in Chapter III, Section D, its fundamental output component is
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approximately equal in amplitude and opposite in phase to the
quadrature first bending mode component of the blender output. The
Q-network output, if summed with the blender output, cancels the first
bending mode quadrature signal. The component ﬁalues of the P and

Q-networks are given in Figure 7.

2. Results

The test data and the time respomnse of modification III appear
in Figure 7.

A significant improvement over the ummodified rate gyro blender
configuration was realized with modification III, although a small
component of the first bending mode signal in phase with the P
commutation function still persisted in the output of the blender.
This component is, in part, a result of the Q-network generating a

small component in quadrature with the Q commutation fumction.

F, Modification IV

The circuit configuration of modification IV is illustrated in

Figure 8.

Modifications III and IV are the same except that, in modification

IV, a P-network is cascaded with the Q-network on the output of the
rate gyro blender. The purposes of the additional P-network are to
remove the inphase component of the first bending mode signal which
is not eliminated by the rate gyro blender, and to remove the inphase

component generated by the Q-network.
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1. Theory of Operation

The operation of modification IV is basically the same as that of
modification III.

The P commutation function is in phase with .the forward first
bending mode signal, and the Q commutation function is in quadrature

with the P function. The additional P-network is adjusted such that

Re _ 2

outputs of the blender and the Q-network, the inphase component of

. Then, if the output of the P-network is summed with the

the blender output at the first bending mode frequency should be

cancelled.

2. Results

The test data and the time response of modification IV appear
in Figure 8.

As can be seen from the test data, the additional cascaded P-

"network greatly improves the operation of the rate gyro blender. This

configuration has the added advantage of providing two methods for
eliminating the inphase components of the first bending mode signals:

the variable attenuators, and the cascaded P-network.

G. Conclusions

The following paragraphs briefly summarized the conclusions of
Chpater IV,

Each of the modified rate gyro blender configurations investigated
in this chapter require that a commutation function be available with

a frequency identical to that of the first bending mode signal. 1In
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addition, it is necessary that the P and Q commutation functions have
a quadrature phase relationship. The four modifications investigated
are based upon these assumptions.

The unmmodified configuration is incapable‘of removing any quadrature
components in the first bending mode signals.

The circuit of modification I yields comparable results te those
of the ummodified configuration, which indicates that the P-demodulator
could be used to replace the absolute value circuits.

Modification II, which utilizes P and Q-networks, eliminates the
quadrature components of the first bending mode signal, but adds an
additional inphase component, because the magnitude of a = R;C
zero. The choice for the wvalue of a =L involves a compromise between

RgC

response time and the residual bending mode signal in the output.

is not

In modifications III and IV, the bandpass filters are replaced by

P-networks. The P-networks are used for the purpose of isolating the

7 components of the first bending mode signals in phase with the P

commutation function. In addition, the P-networks atﬁenuate the
low frequency control signal.

Modification IV provided much better first bending mode signal
cancellation than any of the other modifications. As a result of the
cascaded P and Q-networks on the output of the blender configuration,
the undesirable inphase signal generated by the Q-network is eliminated.
This also helps to reduce error caused by undesirable disturbances

of the integrator output.
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V. CASCADED P AND Q-NETWORK CONFIGURATION

This chapter investigates the case wherein a P and a Q-network
are cascaded, as in modification IV of Chapter IV. A time expression
is obtained for the steady-state fundamental output component
assuming an input of the same frequency as that of the commutation

signals.

A. Introduction

In the investigation of modification IV, a question arose as to
what portion of the steady-state fundamental response of. the P-network
results from the harmonic content of the Q-network output. Therefore,
an analytical study of a cascaded P and Q-network configuration was
undertaken.

The notation used in the analysis of the cascaded configuration
is given in Figure 9. The form of tﬁe input function e(t) is restricted
to R sin wt, a sinusoid with arbitrary amplitude R and with frequency

equal to that of the commutation function.

B. Derivation of Steady-State ez(t)

As shown in Chapter III, Section D, an approximate steady-state
expression for e2(t) can be obtained in the form of a Fourier series.
The series consists of the fundamental term plus higher odd harmonics.,

At this point, it is convenient to make the assumption that the
first commutation of the P-network occurs at t = 0. Therefore, the

assumed input, R sin wt, is in phase with the P commutation function.
35. '
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As in the case of modification IV, the value of Al, the coefficient
of the inphase fundamental term of the Fourier expansion of el(t), is
made equal to -R. This is through proper adjustment of %f” Then,
it can be seen from Figure 9, and the Fourier expansion o% el(t) in
(I11-15), that an approximate steady-state expression for ez(t) can

be written as follows:

—
ez(t) = :{: A2n-1 sin(wn-1)ot + 24 B2n-1 cos(2n-1)wt, (v-1)
n=all c. no.>1 n=all c. no.2>1
where A2n-1 and BZn-l’ the Fourier coefficients, are as given in

(I11-18) and (III-19).

Equation (V~1) is a steady-state approximation of ez(t), which
contains an infinite number of odd harmonic terms. This equation can
be used for determining an approximate steady-state response of the
cascaded Q-network. First the Q-network response to a single harmonic
term is determined. Then, by applying the principle of superposition to
the Q-network, the total Q-network output is expressed as the sum of

the responses resulting from each harmonic term in (V-1).

C. Response of Q-network to a Harmonic Input Term

Each of the harmonic terms in (V-1) can be written in generalized

form as

e(t) = R.n sin (2n-1) ot + ¢n s w-2)

where n is a counting number used to specify the amplitude R.n

of the harmonic. The phase angle ¢n can be adjusted so that (V-2)
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can represent the sine terms, (¢, = 0°), or the cosine terms,
(6, = 90°), appearing in (V-1).
Through a procedure similar to that outlined in Chapter III,
the form of the output expression of the Q-network can be determined

for any commutation period. The desired expression is

-at
e3(t) = Ae Pt 4 ah sin(2n-1) ot + B8 cos(2n-1) wt, (v-3)
n
where
&, = C,1 cos ¢n - an sin ¢n ,
Pn = C,; sin &, + C , cos ¢n .
C. = ab,
nl ~
(2n-1)2 o? + a’ ’
c y = abn
n (2n-1)2 ? + a2 °
s - L,
f
and
R
b, = =B

n Ric *

The Q-network is commutated every nt/w seconds, and the commutations
of the P and Q networks are separated by /2w seconds.
It must be assumed that sufficient time after t = 0 has passed

for the approximation of (V-1) to be valid. After the assumed elapsed
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time, we apply the generalized steady-state harmonic input of (V-2)
to the input of the Q-network in order to determine its output. The
elapsed time is defined as kT, (where k is a counting number and T

is the period of the commutation function). To simplify the analysis

make the change of wvariable

t' = t - kT. (V-4)

Then, the components of ez(t') are in phase with the corresponding
terms of ez(t), and the first gommutation of the Q-network occurs at
t' = n/2w seconds.

Assume a Q-network output, M.n volts, just prior to the first
commutation. Then, the analysis proceeds as in Chapter III, Section B;
that is, the value of A, the coefficient of the transient term in
(V-3), is evaluated during each commutation period of the Q-network.
fhe value of A between the first and second commutatiohs is determined

by equating -M_ to the ej(n/2w) from (V-3), or
a—
A = (My- o (-DFH e (v-5)

Therefore, the response of the Q-network resulting from the generalized

harmonic input during the first commutation period is
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s
-a(t'-55) |
e + o sin(2n-1) wt'

eq(t") = [("Mn - 1™y

S

+ B, cos(2n-1) wt' | . (v-6)

3

[ u(t'-5y) - u(t'50) ]

The unit-step notation is used in (V-6) to denote the time interval
over which the output expression is valid.

The foregoing procedure of determining the imitial output
voltage immediately following each commutation, and of equating
this voltage to e3(t'), evaluated from (V-3), can be continued for any
period B 4+ L < t' < (m+l) X+ L, (where m is the number of

w 2w o 2w

commutations minus ome).

It can be shewn that the output expression due to the generalized

o s fod BE 4 L o g ) 4 g
harmonic input for any period = +2u><t < (nH-)w+ 2 1S

m 7
+J0 _a(tl__
e3(t') = {(_1)m [ M, + (-1)“‘1 an _ 2(_1)n-1 j : ea1,_ ] . 2m)

i=0
+ @, sin(2n-1) ot' + Bn cos(2n-1) wt } . (v-7)
mt

[u(t' ST - ult - () § - 5D ] :

The series in (V-7) can be written in clesed form by the use of

(III-12). Therefore, (V-7) becomes
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41 ‘ 1 a(m+l)£
- e
es(t') = {(-1)“‘[ M, + (-1)n-1 a, - 2¢-1)™1 a 1 - e% ]

—a(t'-zt-")
e 20/ 4 Q, sin(2n-1) wt' +-Bn cos(2n-1) wt'f .

' [u(t' ST - ult! - (mbl) -5 J . (V-8)

If m, the number of Q-network commutations minus one, becomes
very large, the Q-network response to the generalized harmonic input

term can be approximated by

- at"

2
e3(t') = -{(-1)m (_1)n—1 an[ ;%EE:I] +a, sin(2n-1) wt'
®

+ Bp cos(2n—1)<bti} .

[u(t' - - ule! - () I - %—w—)] , (v-9)
where
mit pi4
t" = t' -5 -9

Equation (V-9) is an approximate steady-state expression for the
actual Q-network response resulting from the generalized harmonic
input, R, sin((2n-1) ot' + ¢;). The first term in (V-9) is an
approximate square wave with frequency equal to the commutation
function. The remaining terms are components at the frequency of the

harmonic under consideration,
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D. Steady-State Approximation of e3(t')

The result of (V-9) can be extended to determine the total
steady-state response of the Q-network to the input described by
(v-1), since each term of (V-1) can be expressed.in the form of the
generalized harmonic input of (V-2).

\" ,
Consider the first series,zl‘ A2n-1 sin(2n-1) wt', of ey(t')
n=all c. no.sl
obtained from (V-1). The Q-network steady-state response resulting
from this series of input terms can be derived from (V-9) by letting
Ry = Ay,,.1 and ¢, = 0. The response resulting from the terms of the
second series in ez(t'),zgj Bop-1 cos(2n-1) wt', can be derived by
n=all c. no.

letting Rp = B2n—1 and ¢, = 90° in (V-9).

If the foregoing procedure is used, the resulting total steady-

state approximation of e3(t') due to the steady-state input e2(t') is
{ 2e-at
-1 £ .
e3(t') =< Z -1)™ Agp-1 (-1)™ &, l: e-a_n'_l il + Azn_1[<1031n(2n-1) ot'
n=all ¢. no.>1 w

+ By cos(2n-1) a)t']}

{ 1) -1 o __2_9_5”_
+ (-D7 Bypp 1) 90| oo - 1
n=all c. no.

+ an-l [0190 sin(2n-1) wt' + B90 cos(2n-1) wt'] })
[u(t' S - ue - iy E ’;—TD)] , (V-10)
where



40 GE Tt N

43
0/
%o ~ i‘ﬁ |¢n = 90°,
~ _ Bn
PO N E__nl ¢n = 00,

and

Equation (V-10) is an approximate steady-state expression for
e3(t'), the response of the Q-network resulting from the input described
by (V-1). It contains an infinite number of odd harmonic terms plus
a fundamental frequeney component., This component consists of the
sum of the comtributions produced by each of the terms of (V-1).

E. Evaluation of the Coefficients of the Fundamental
Terms in the Fourier Series Expression for e3(t')

The approximate steady-state expression for es(t') given by
(V-10) can be expressed as a Fourier series in trigonometric form.

The coefficients of the fundamental terms are
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[ e3(t') sin ot' dt' ,
"o

>
b

i
Hlro

and ' (V-11)

f e3(t') cos wt' dt',

=LY

B'l =

where the primes on A; and By are used to avoid confusion with Aj

and B1 in the Fourier series of el(t).

The integration in (V-11) results in

-ar
n-1 -
Al _ S—‘ 8 A2n-1 (-1 & a(e " +1) (v-12)
! vy &t 2 4 o2
n=all c. T(e g -1(a% + )
no.>l .
1 -axn
n—
+‘"\“1 8 BZn—l (-1) Qg ale © +1)
- -an 5
n=all c. no. T(e © -1)(a“ + wz)
+ Bl C890 R
and
1 -an
n- ®
5 ) 8 A2n-1 (-1) @, wle +1)
1 -an 2
n=all c. T(e — -1(a* + w?)
no.>1
-an
8B DL e wle o +1) (v-13)
2n-1 90
- -ari
e TeTm D@ +o?)
no.

+ By Bgg
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As can be seen in (V-12) and (V-13), the individual terms
of A'l and B'; resemble B, and A; in form.
The coefficients of the harmonic terms of e3(t') can be derived
in a similar manner if necessary. However, we are interested only in
the fundamental coefficients in this case.

F. Evaluation of the Coefficients of the Fundamental Terms In
The Fourier Series Expression for eo(t')
R
As in the case of modification IV, the value of ii is adjusted
i -

to approximately 1.23, Then the component of B'1 resulting from the

B1 input term at the Q-network is cancelled in the output summing

junction, and the fundamental coefficients of eo(t'), which will be denoted

ty A"; and B", are

A" = Al

and (v-14)
B" = B'. + B, .

Furthermore, the fundamental frequency term of eo(t') can be expressed
as follows:
eo(t') = A"1 sin t' + B“1 cos ot' . (v-15)

(fund.)
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As can be seen in (V-12), (V-13), and (V-14), the expressions
for A", and B"_ contain several infinite series. Therefore, the

1 1

exact computation of A"1 and B“1 is not possible unless the series
can be written in closed form. However, these expressions answer
the question of what portion of A", and B"; is contributed by each
of the harmonic terms of ez(t’).

The expressions for A’; and B"1 are independent of Mn’ the
initial Q-network output voltage just prior to the first commutation.

Therefore, the steady-state expression for e (t') is not dependent

upon the time at which ez(t') is applied to the Q-network.

G. Conclusions

The steady-state response of the P-network contains a fundamental
frequency term plus an infinite number of odd harmonic terms. Each
of these harmonic terms, when applied to the Q-network, generates a
Q-network steady-state response term at the fundamental frequency.
If the assumption is made that the principle of superposition applies

to the Q-network, the Q-network response at the fundamental frequency

is the sum of the contributions of the individual input components. The

steady-state Q-network response is independent of the initial output
voltage at the first commutation instant, and the derived Q-network
steady-state response can be used to determine the fundamental fre-

quency component of the cascaded configuration output.
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IV, RECOMMENDATIONS

The derived P-network steady-state output expression should
be investigated further to determine a Fourier series representation
in the case wherein the input and commutation frequencies are different.
The frequency response of the P-network might then be determined
analytically.

Also, the use of multiple capacitor RC commutated networks
should be investigated in the various blender configurations. The
amplitudes of the undesirable‘output harmonics of the RC commutated
networks could be reduced in this way.

The cascaded P and Q-network configuration with multiple commutated

capacitors might be investigated as an alternate to the rate gyro

blenderx.
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